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Abstract
Functional magnetic resonance imaging is the most widely used imaging technique to study
treatment-induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to
the challenges researchers face when studying patient populations with brain damage in cross-
sectional settings. The present review focuses on issues specifically relevant to neuroimaging data
analysis in aphasia treatment research identified in discussions among international researchers at
the Neuroimaging in Aphasia Treatment Research Workshop held at Northwestern University
(Evanston, Illinois, USA). In particular, we aim to provide the reader with a critical review of
unique problems related to the pre-processing, statistical modeling and interpretation of such data
sets. Despite the fact that data analysis procedures critically depend on specific design features of
a given study, we aim to discuss and communicate a basic set of practical guidelines that should
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be applicable to a wide range of studies and useful as a reference for researchers pursuing this line
of research.
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1.0. Introduction
Functional magnetic resonance imaging (fMRI) is one of the most widely used imaging
techniques to study intact and impaired cognitive functions (Crosson et al., 2010). In
particular, an increasing number of studies have used fMRI to assess functional brain
activity changes in response to treatment of acquired aphasia (for recent reviews see
Meinzer et al., 2011; Thompson & den Ouden, 2008; Meinzer and Breitenstein, 2008;
Crinion and Leff, 2007). Although aphasia can be caused by various types of brain damage,
it is most frequently observed after middle cerebral artery stroke in the left hemisphere
(Nicholas, 2005). The analysis and interpretation of functional imaging data in brain
damaged populations poses several challenges to the researcher, relating to a number of
factors, including the presence of a lesion and possible hemodynamic changes due to
vascular pathophysiology.

Compared to cross-sectional studies (e.g., examining individuals with aphasia at different
stages of recovery), neuroimaging studies of treatment effects present additional challenges.
They aim to assess treatment-induced plasticity of neural functions in a longitudinal design,
typically involving repeated assessments in the same individuals (e.g., before and after
treatment). Whereas some aspects of data processing are essentially the same as
neuroimaging studies of healthy participants, several important differences with regard to
the data processing and statistical analyses need to be considered when pursuing aphasia
treatment research. Previous reviews have discussed general aspects of functional imaging
in brain damaged populations (e.g., Price et al., 2006; Crosson et al., 2010) or have focused
on specific language domains in aphasia (e.g., Crosson et al., 2007 for a review of imaging
language production mechanisms). The present paper focuses on issues specifically relevant
to assessing treatment-induced plasticity and conveys the consensus regarding critical
aspects of data processing that was reached during the Neuroimaging in Aphasia Treatment
Research Workshop, held at Northwestern University.

In this paper, we aim to provide the reader with a review of critical issues regarding data
analysis in functional neuroimaging of aphasia treatment and provide guidelines regarding
how to deal with these issues. We acknowledge that data analysis procedures depend on the
goals and specific design features of a given study (e.g., experimental design, type of
treatment, language modality assessed), so the recommendations are intended to have broad
application. Although data analysis also includes the reporting of these procedures, this will
not be the main focus of this manuscript, as general guidelines for describing
methodological aspects of fMRI studies have been elaborated elsewhere (see, for example,
Poldrack et al., 2008). However, because data analysis in brain-damaged individuals might
differ substantially compared to that in healthy participants, we make recommendations for
reporting specific procedures where necessary.

In summary, we discuss a basic set of practical suggestions for analyzing datasets collected
to assess treatment-induced plasticity in aphasia patients. These guidelines are intended to
provide a reference for researchers pursuing this line of research.
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2.0. Processing of MRI Data Sets
Functional MRI datasets require several pre-processing steps that are implemented in similar
ways in available and commonly used data analysis packages (e.g., Statistical Parametric
Mapping, SPM, http://www.fil.ion.ucl.ac.uk/spm; Analysis of Functional Neuroimages,
AFNI, Cox, 1996; Brain Voyager©). These include (1) realignment of the images of an
fMRI time series to compensate for head movement during scanning and correction for slice
timing differences, (2) co-registration of the functional data to a high-resolution structural
image, (3) spatial normalization to account for inter-individual variations in brain size and
anatomy, and (4) spatial smoothing of the data to increase statistical power for group
analysis. Following pre-processing, a statistical model is designed to estimate neural activity
in a single patient or within and between groups of study participants.

Realignment, slice timing correction, and co-registration procedures are relatively
unaffected by the presence of brain damage. Thus, early pre-processing of lesioned and
normal brains is essentially the same. However, spatial normalization, smoothing and, most
importantly, aspects of statistical modeling of the data (model-specification, statistical
inferences and interpretation) vary depending on whether healthy or aphasia participants’
data are analyzed. Moreover, there are several important differences regarding the analysis
of cross-sectional or longitudinal data in aphasia research. Thus, we will discuss them in
more detail below.

2.1. Pre-processing fMRI Data
2.1.1. Spatial Normalization (Between Participant and/or Session Realignment)
—There are basically two different ways to proceed after image realignment and co-
registration. One is to statistically analyze the respective dataset in native space, which
assures a valid relationship between an individual participant’s anatomy and his/her
activation. This approach, however, is limited to extraction of data from individual
participants and cannot be used when the objective is to generate a group image reflecting
statistical analysis of mean differences between groups or across sessions. An alternative
way to proceed is to spatially normalize the functional imaging data. This is a necessary step
for studies that rely on voxelwise comparisons, such as contrasts between healthy and brain-
damaged groups, comparison of activity patterns of individual participants to a reference
population, or correlation of treatment outcome with changes in activity patterns. Moreover,
it is necessary to report activity patterns in standard coordinates (e.g., Talairach or Montreal
Neurological Institute space (Mazziotta et al., 1995; Talairach and Tournoux, 1988)), which
facilitates comparison of signal location with other published studies. The quality of the
normalization has been shown to affect activity patterns in group studies of healthy subjects;
i.e., inaccurate normalization leads to reduced sensitivity to detect functional activity
(Ardekani et al., 2004). This is further complicated in brain-damaged participant groups
where automated warping algorithms, as implemented in standard neuroimaging analysis
platforms, may produce inappropriate solutions because of the presence of lesioned tissue,
leading to inaccurately localized activation (Price et al., 2006). Similarly, misalignment of
images in aphasic groups may result in falsely detected activity compared to a control group.
Thus, precise and valid normalization is critical to understand the neural substrates of
treatment-induced recovery.

Before proceeding further with the discussion of spatial normalization, caveats regarding
such procedures in individuals with stroke must be mentioned. First, group studies that
analyze mean changes from one session to the next can obscure perilesional activity,
especially when study samples have diverse lesion patterns (Crosson et al., 2007). Because
the contribution of perilesional activity to recovery of function as a result of treatment
frequently is an important issue, this kind of session-to-session comparison is problematic in
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studies of individuals with diverse lesion patterns, unless perilesional activity is not of
interest. There are valid uses of group images in aphasia treatment research, and ways of
addressing this problem are discussed later in this paper. Second, we use SPM as an example
of how problems in registration of images for stroke patients have been addressed. This is
not meant to imply that other programs have not addressed these problems or that different,
equally effective solutions to those available in SPM are not possible.

Methodological advances in neuroimaging (Bandettini, 2009) have increased our ability to
combine brain images from different brain-damaged participants into a common anatomical
space and to analyze thousands of regions simultaneously (Godefroy et al., 1998; Rorden &
Brett, 2000). There are many different methods of spatial normalization (also referred to as
registration), some automated and some manual, with global or local warping to a given
atlas (Godefroy et al., 1998; Rorden & Brett, 2000; Crinion et al., 2007; Seghier et al, 2008).
All have strengths and weaknesses that should be recognized. Ideally, if it is decided that
scans will be normalized, the deformation error should be quantified, for example, using
forward and backward registration between each participant’s scan and atlas or template
space. Some methods may benefit from normalizing (registering) scans to an age-
appropriate atlas to further minimize potential image registration error.

Automated normalization algorithms often use differences in intensity values between a
given image in native space and a template to calculate the spatial transformation parameters
that minimize the mismatch between the two images (Friston et al., 1995). This usually
involves both linear (affine) and nonlinear distortions of the original image. Linear
transformations apply uniform warps across the entire image to match the overall shape and
orientation of the template. However, linear algorithms restrict the fitting of local anatomy
(e.g., sulcal structure and size). Therefore, subsequent non-linear transformations that are
concerned with local shape are required. Problems with automated normalization procedures
arise when there are areas of large signal change, such as those reflecting the presence of a
structural lesion. Although affine transformations are relatively robust to lesion effects, the
quality of non-linear transformations are disproportionately affected. That is, in an attempt
to reduce image mismatch introduced by the structural damage, the algorithm may over-fit
the original image, distorting intact tissue and reducing the size of the lesion in the
normalized images (Brett et al., 2001).

Hence, affine-only solutions cannot be recommended for lesioned brains, as they
compromise the fitting of local anatomy, which is especially important in individuals with
stroke-induced lesions that produce enlarged ventricles or local atrophy. Thus, there have
been attempts to restrict the normalization to undamaged parts of the brain by masking the
lesion (e.g., cost-function masking; Brett et al., 2001), thus minimizing the impact of the
lesion on the non-linear component of the normalization of the remaining image. Masking
the lesioned area does not mean these areas are not normalized, but rather that there is a
continuation of the normalization solution for the remaining brain to the lesioned area. With
regard to structural images, cost-function masking has been shown to be superior to affine-
only solutions (Brett et al., 2001) and is considered the gold standard. The major limitation
for aphasia studies is that cost-function masking is limited to individuals with unilateral
pathology, because normalization of the area under the mask largely depends on intact
homologous areas. In addition, cost function masking might be compromised by a lack of
symmetry between brain structures (Binder et al., 1996) and masking of lesioned brain areas
involves an operator dependent and laborious manual definition of the lesion boundary. We
note, however, that this latter problem might be accounted for by applying more recent
automated lesion identification procedures (see, for example, Seghier et al., 2008).
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With regard to functional imaging, normalization of a high resolution anatomical image
provides transformation parameters that are applied to the co-registered functional images.
However, the impact of different normalization procedures on functional activity has only
been formally assessed for one of the major functional imaging analysis platforms so far
(SPM5). Crinion et al. (2007) compared the performance of three different normalization
procedures (affine only, standard SPM normalization, and unified normalization as
implemented in SPM5 and above) with and without cost-function masking. Compared to
previous SPM normalization procedures (see Crinion et al., 2007 and Ashburner and Friston,
2005 for a comprehensive description of both procedures), unified normalization comprises
segmentation (i.e., tissue classification as grey and white matter and cerebrospinal fluid),
bias correction (modeling of tissue non-homogeneities, which in turn allows modeling of
healthy and lesioned tissue separately within one tissue class), and spatial normalization in a
single iterative model. In particular, the bias correction may act like an implicit cost-function
mask (e.g., the effects of lesioned white matter should not affect the normalization of intact
white matter that is modeled separately; see Ashburner & Friston, 2005 for details).

Performance of different normalization procedures and their impact on functional data were
assessed in three experiments establishing the anatomical validity of each respective
normalization procedure using anatomical landmarks (i.e., co-localization of anatomical
landmarks across images) in intact brains and intact brains with simulated lesions. In
addition, the impact on functional activity was assessed by using a previously published
dataset of stroke patients obtained during an auditory speech comprehension paradigm
(Crinion and Price, 2005). The main results of the study were that unified models (1)
produced the best results in terms of anatomical co-localization and (2) resulted in greater
sensitivity for functional activity. While cost-function masking improved the quality of the
standard normalization, it did not further improve the quality of the unified solution.

In a subsequent study, Andersen et al. (2010) found that cost-function-masking used with
the unified solution produced greater normalization accuracy of high-resolution structural
scans in chronic stroke patients with relatively large lesions and secondary changes in brain
morphology (e.g., dilation of ventricles). Moreover, no difference in normalization accuracy
was found between different types of masks (precise, roughly-outlined, smoothed, or
unsmoothed), indicating that even a time-efficient rough outlining of the lesioned area
appears to improve normalization quality significantly compared to unified normalization
without masking in such patients. However, it is worth noting that the localization errors
introduced by both methods (i.e., unified normalization with or without cost-function
masking) were significantly smaller than the typical smoothing kernels (6–8mm) used in
fMRI studies. Thus, the impact of these errors is not large enough to significantly affect
group fMRI studies in patients with brain damage.

Taken together, these findings suggest that, when using SPM5 or later versions, unified
normalization is recommended over other approaches when morphological changes are
restricted to the region of primary pathology. When this normalization approach fails,
additional cost-function-masking is advised, especially in patients with additional secondary
changes as a consequence of large lesions. In the context of other imaging analysis platforms
where the impact of different manual or automated normalization procedures on functional
activity patterns has not been formally assessed, cost-function masking may be considered
an appropriate solution to minimize inaccurate normalizations due to lesion effects.
Moreover, quality assurance procedures should be established and reported (e.g., comparing
the results against the image in native space to detect distortions of the normalized image).
This is particularly indicated in longitudinal group studies on aphasia rehabilitation that
require not only good within-subject session-to-session registration of the images, but also
good between-subject registration to enhance the sensitivity of the analysis.
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2.1.2. Detrending for Signal Drift and Spatial Smooting—Detrending fMRI series
for linear or low frequency drifts in signal baseline and spatial smoothing of image data are
two procedures that can be performed prior to data analysis. Regarding the former, linear
and low frequency drifts in baseline signal levels are common in fMRI data, and they reduce
sensitivity to task-related activation. Detrending algorithms to remove the signal drift from
the data vary in effectiveness. Tanabe et al. (2002) found that linear and quadratic
detrending increased sensitivity to task-related activation in individual fMRI images,
whereas cubic detrending actually decreased sensitivity to activation changes. Although a
spline detrending method was superior to linear or quadratic detrending, an automatic
method selecting the optimal detrending method on a voxel-by-voxel basis was superior to
all other methods, increasing sensitivity to activity changes by 150%. These results indicate
that even within a single data set, different kinds of baseline signal drift can be present and
further suggest that a method that can select the best detrending method on a voxel-by-voxel
basis is preferred.

The purpose of spatial smoothing is to increase signal to noise in the time series data by
reducing random noise, to account for inter-subject variability in functional and structural
anatomy by blurring the spatial details of the functional maps (i.e., increase statistical power
in group studies), to allow for parametric statistical testing, and to assure that the data
conform to the lattice assumption of Gaussian random field theory (Turner et al., 1998).
Spatial smoothing is usually achieved by convolving the data with a Gaussian kernel of a
given size that is determined by the voxel size and the size of the anticipated signal change
(Hopfinger et al., 2000; Price et al., 2006). Drawbacks of spatial smoothing are that spatial
resolution decreases, and blurring or shifting of activation may result in merging of adjacent
clusters of activation. Hence, accuracy of localization may be compromised, which is most
critical for single subject studies. Typical smoothing kernels in fMRI group studies
involving healthy participants are usually two times or more the re-sampled voxel size.
Choosing an optimal smoothing filter is not trivial as it may significantly affect the results of
a given study. However, the impact on functional activity in brain-damaged populations has
not been thoroughly evaluated. Although the degree of spatial smoothing clearly depends on
study design and should be determined empirically, studies in healthy individuals can be
used as a starting point to determine the optimal filter width for studies with neurologically
impaired individuals (e.g., Hopfinger et al., 2000; Mikl et al., 2008).

The type of study and the number of participants are critical to determining the degree of
spatial smoothing. In single participant studies precise and valid localization of focal
activation is crucial. Studies in healthy participants have shown that larger smoothing filters
(e.g., >10 mm) may induce shifting of local maxima up to 12 millimeters (e.g., Geissler et
al., 2005; Mikl et al., 2008). Therefore, no smoothing or only low spatial kernels (e.g., not
larger as twice the largest acquired voxel dimensions) should be used in studies examining
activation in individual participants to assure accurate localization. This is particularly
critical when peak activity is located in sulcal walls, and even minor shifts of activity may
result in gross mislocalization relative to the cortical surface (e.g., on the opposite bank of
the sulcus) (Brett et al., 2002). This latter problem might be of lesser concern when using
cortical surface mapping techniques (e.g., Van Essen, 2004), but this feature is currently not
implemented in most imaging analysis platforms (SPM, AFNI). For studies using group
voxel-by-voxel images, between-subject variability in anatomy, functional activity and
registration quality need to be taken into account, which may require increasing filter
widths. In this context, extensive spatial smoothing may be indicated for individuals with
brain damage compared to healthy individuals due to greater between-subject dispersion in
the location of local structures (c.f., Price et al., 2006), increased between-subject
registration errors, or overlapping lesion borders that occur even in highly homogeneous
samples. Group size may also be an important factor. As a general rule, in healthy
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participants it has been suggested that with larger numbers (16+) a similar smoothing factor
can be chosen compared to single subject studies; however, the smoothing kernal should be
larger when examining data from smaller sample sizes in order to account for outlier effects
in the spatial localization of activation patterns (Mikl et al., 2008). Individual factors like
quality of the data (e.g., signal-to-noise ratio and quality of inter-subject registration) also
need to be taken in account. The degree of smoothing may also depend on the anatomical
region-of-interest (e.g., cortical vs. subcortical) and the correction level used. This was
demonstrated in healthy participants by Hopfinger et al. (2000), who showed that smaller
smoothing filters increased sensitivity in cortical regions, whereas larger filters increased
sensitivity in subcortical areas.

In summary, studies that use group voxel-by-voxel analyses in healthy participants have
suggested that the optimal degree of spatial smoothing is critical to the outcome of the study
and that this depends on several factors. Some of these factors are influenced by the aims
and design of the study (e.g., single-subject vs. group designs, anatomical region of interest),
which need to be determined empirically (e.g., anticipated signal change and signal to
noise). Quality assurance procedures (e.g., intersubject registration quality and variability of
functional activity peaks, and peak activity of unsmoothed activity in native space) may help
to assure that the optimal extent of spatial smoothing is chosen.

2.1.3. Specific Problems Related to Motion Artifacts during Overt Speech—The
issue of motion artifacts when assessing overt speech production has been addressed in a
recent review by Crosson et al. (2007). We discuss this issue briefly here because word-
retrieval impairments are one of the most frequent symptoms of aphasia (Kohn and
Goodglass, 1985) and most fMRI studies to date that have examined treatment-induced
recovery of language functions, have used overt naming or other language production
paradigm to evaluate treatment effects (e.g., picture naming, category generation; see
Meinzer and Breitenstein, 2008, and Thompson and den Ouden, 2008, for review). Further,
although covert paradigms have been shown to reliably elicit activation in language related
brain areas in healthy participant (see Kielar et al., 2010), the lack of behavioral control
limits their usefulness in aphasia treatment studies. That is, response accuracy and reaction
time often are important to fully characterize aphasia recovery, and these data are not
available using covert neuroimaging tasks.

There are several ways to deal with motion artifacts (which are predominantly false positive
activity) during overt generation. At the design level, for example, motion-related artifacts
can be avoided by using blocked designs and dropping images confounded by evidence of
motion (e.g., Martin et al., 2005) or by using sparse acquisition paradigms that acquire the
BOLD response after overt articulation (Meinzer et al., 2008; Fridriksson, 2010). However,
these strategies are associated with a loss of information and reduced flexibility compared to
event-related paradigms. Moreover, optimizing of presentation parameters has been shown
to reduce motion-related artifacts when using ideal waveforms for analysis. These designs
exploit the different temporal properties of (rapid) motion induced signal changes compared
to more slowly evolving changes of the task-related hemodynamic signal (e.g., Birn et al.,
2004). However, even when using such designs, overt articulation may still result in false
positive activity and standard detrending algorithms that aim to remove motion-related
signal from the time series non-selectively across all voxels, may result in reduced
sensitivity (see Crosson et al., 2007 for details). More recently developed detrending
algorithms consider the latter weakness by selectively removing motion related signal
changes from the images, which results in improved sensitivity and specificity (Gopinath et
al, 2009).
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3.0. Statistical Model Specification
The next data analysis step involves setting up a statistical model to estimate task-related
activation. Most fMRI data are analyzed in the context of the General Linear Model (GLM).
The first step here is setting up a design matrix consisting of factors that potentially
contribute to the actual fMRI signal (experimental conditions and non-experimental sources
of variability like head movements). The structure of the design matrix and factors included
depend on the hypotheses to be tested. Extracting the respective task-related signal can be
accomplished in different ways (see below) and treatment-induced plasticity in individuals
with aphasia can be assessed in individual participants (first-level analysis) or in groups
(second-level analysis). Both approaches pose several challenges with regard to statistical
model specification and will be addressed in the following. For discussion of more general
issues of design and statistical analysis of fMRI data in individuals with brain damage see
Price et al. (2006).

3.1. Modeling the Hemodynamic Response
Extraction of task-related signal at the individual subject level can be accomplished with
either constrained or unconstrained methodologies. Constrained methods rely on a
predetermined model of the hemodynamic response form, whereas unconstrained methods
make no assumptions about the shape of the response. Each methodology has its strengths
and weaknesses. As examples of constrained and unconstrained methodologies, we discuss
below use of a standard model of the hemodynamic response function (HRF) and
deconvolution of the HRF with unconstrained modeling, respectively.

Many studies with healthy participants model blood oxygen-level dependent (BOLD)
activity by using a standard HRF. To account for individual differences in shape or timing of
the HRF, the design model can include additional factors (e.g., temporal or spatial
derivatives) or the HRF can be modeled by using other types of basis functions (e.g., the
gamma function). A different approach that uses participant-specific HRFs may
substantially improve the model fit (Aguirre et al., 1998). Modeling the HRF poses a
challenge in people who have suffered a stroke because neurovascular reactivity in
perilesional, or even distal, brain areas may be compromised due to microvascular
impairment. In fact, despite intact neural functioning in some brain-damaged individuals, no
positive BOLD signals, reduced positive BOLD signals, or even negative signals may be
observed (e.g., Röther et al., 2002; Rossini et al., 2004; Murata et al., 2006; Fridriksson et
al., 2006; Bonakdarpour et al., 2007). It has also been shown that the shape or the timing of
the HRF can be compromised, even in individual with chronic stroke-induced aphasia (Peck
et al., 2004; Bonakdarpour et al., 2007). For example, Peck et al. (2004) investigated the
temporal characteristics of the BOLD response in three individuals with chronic Broca’s
aphasia during a category generation task. Functional MRI revealed prolonged HRFs and
longer time to peak (TTP) in right hemisphere regions of interest (ROIs) in two of the
patients with impaired behavioral functioning when compared to healthy controls.
Bonakdarpour et al. (2007) found similar abnormal HRFs in three of five chronic aphasic
individuals and showed that, when adjusted for their true HRF, patients with delayed TTP
showed activation (particularly in perilesional tissue) which was not apparent when a
canonical HRF was used. Importantly, in a study, which examined activation associated with
treatment-induced language recovery in aphasic individuals, Thompson et al. (2010) found
that regions of the brain in which upregulation of neural activity was found correlated with
the HRF TTP. That is, regions of the brain with more normal (i.e., faster TTP) were more
likely to demonstrate treatment-induced recovery of language processing.

Several strategies are available to address the potential problems related to modeling the
hemodynamic response function in stroke patients. First, some baseline individual’s cerebral
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ischemic condition can be assessed in addition to BOLD imaging, as even in chronic stroke
patients misery perfusion has been shown to be related to poor BOLD signal (Murata et al.,
2006). An alternative strategy, recently described by van Oers et al. (2010), is to assess
intact hemodynamic responsiveness by using a breath-hold paradigm. However, this strategy
may be contraindicated in individuals with stroke because it could result in ischemia in areas
with reduced hemodynamic reserve (Hillis A.E., personal communication). Second, with
regard to the altered shape and timing of the HRF several different alternatives are
conceivable. As in research with healthy individuals, several studies have successfully used
standard canonical HRFs or other types of basis functions (e.g., gamma function) with the
first (temporal) derivative to account for increased variability in stroke patients (e.g. Crinion
& Price, 2005). A third strategy is to collect information about study participant’s
hemodynamic parameters using an event-related design and a long inter-stimulus interval.
This method allows a true HRF to be identified for each participant, which can then be used
to optimize modeling of each participant’s fMRI data on an individual basis and, thereby,
improve BOLD signal detection (Bonakdarpour et al., 2007; Thompson et al., 2010a). Also,
TTP measures may be of interest to characterize treatment-induced improvement or
rehabilitation status. For example, in the aforementioned study by Peck et al. (2004) TTP
was delayed prior to a language intervention and decreased (i.e., became similar to that of a
control group) after treatment. Fourth, successful detection of BOLD activity using model-
driven frameworks such as the GLM is only optimal if the underlying modeling assumptions
are correct (e.g., regarding the timing and shape of the HRF, noise characteristics, etc.),
which may be more difficult to achieve in some brain-damaged individuals, such as those
with known perfusion deficits due to carotid stenosis. Hence, the weakness of constrained
modeling of hemodynamic responses is that it may miss important characteristics of
hemodynamic responses if they are not anticipated. Research with stroke individuals is
particularly vulnerable to this problem where the shape and timing of hemodynamic
responses are known to be variable.

On the other hand, unconstrained data-driven techniques may offer an alternative means to
assess relevant fluctuations in the measured signal. For example, there are different
techniques that can be used to deconvolve HRFs, some of which are entirely data driven
with respect to HRF shape, such as the earliest form of deconvolution implemented in AFNI
(Cox, 2009). The advantage of this technique is that it can accommodate changes in
hemodynamic response shape from voxel to voxel even within individual participants (See
Glover, 1999 and Serences, 2004 for more details about deconvolution techniques). The
disadvantage to this approach is that it is very sensitive to noise such as that generated
during overt speech during scanning. In the latter instance it is necessary to have a technique
for minimizing noise in the data (e.g., Gopinath et al., 2009), and such techniques are not
perfect. Averaging of raw signals from response epochs timed to experimental
manipulations is also assumption free, but is subject to distortions, for instance when there
are sequential dependencies of HRFs (Serences, 2004). Independent component analysis
(ICA, McKeown et al., 1998) is another assumption-free method. ICA separates the signal
into maximally independent spatiotemporal components and does not impose any
constraints on the HRF and thus, the results are data driven. However, it is critical to have a
method to determine which components are signal and which represent noise.

3.2. Temporal Characteristics of the Responses
Regardless of the language task or paradigm used (e.g., picture naming, sentence-picture
matching, lexical decision by button press), response latency often is delayed in aphasic
individuals and must, therefore, be considered when analyzing fMRI data in these
individuals (see Crosson et al., 2007 for a more detailed discussion of this issue and
examples). Timing the analysis to the presentation of the stimulus (stimulus-locked analysis)
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or to the response itself (response-locked analysis) can make a difference in the location of
significant brain activity. Processes more closely linked to the presentation of the stimulus
(e.g., perceiving or comprehending the stimulus) would be favored in a stimulus-locked
analysis. Whereas, processes more closely linked to the response (e.g., articulation of a
given word or sentence) would be favored by a response-locked analysis. This consideration
becomes more important with longer latency periods between the stimulus and the response,
because the activation patterns become more variable. Thus, choosing the stimulus-based,
response-based, or a combination of both analyses depends on which cognitive processes are
targeted. Moreover, given the highly variable performance often seen in individuals with
aphasia, it may not always be clear which type of analysis to chose, because the cognitive
processes may be variably linked to the stimulus or the response onset (e.g., word-retrieval
processes).

There is no easy solution to this problem and although there is a clear distinction between
stimulus onset and response onset in some tasks (lexical decision, overt word production),
others only allow a stimulus locked analysis (e.g., covert reading). A recent example of how
to deal with such issues has been introduced by Crosson et al. (2009), who analyzed fMRI
data obtained during an overt category generation task in five individuals with chronic
aphasia and combined both types of analyses (stimulus- and response-locked) to account for
delayed and variable responses in the participants. Because this type of analysis allows a
better model fit for each voxel of the image, it may also account for different time-courses
across different brain areas.

4.0. Statistical Inferences and Interpretation
4.1. Comparing Activation across Scan Sessions

Studying the natural history of recovery or treatment-induced plasticity in aphasia requires a
longitudinal experimental design, which involves subjecting study participants to two or
more neuroimaging sessions and comparing activation across sessions. Differences between
assessments may stem from different sources (e.g., test-retest effects due to repeated task
exposure, scanner related changes, plasticity related changes). Thus, special considerations
relevant to the replication or reliability of activation is an issue of concern. Several
suggestions for dealing with this issue are discussed in Rapp et al. (this volume), one of
which is to conduct repeated baseline scans to ascertain any variability in activation (e.g.,
see Fridriksson et al., 2007). Another is to include tasks that reflect both impaired and
unimpaired functions (Leger et al., 2002) or items that participants can and cannot respond
to correctly (Menke et al., 2009). In any case, the issue is how best to compare activation
changes between sessions. Several different measures can be obtained, including voxel-
counting approaches and measures of activation magnitude such as percent signal change.
Given that even in healthy participants the probability for single voxels to be consistently
activated across scanning sessions is relatively low (see Meltzer et al., 2009), examining for
activation in larger regions of interest (ROIs) can yield much better repeatability across
sessions (e.g., Machielsen et al., 2000; Maldjian et al., 2002;; Swallow et al., 2003; Wei et
al., 2004). Moreover, it has been suggested that magnitude of signal change measures are
much more consistent across repeated sessions than simple voxel counting approaches (for
examples of such approaches see Voyvodic, 2006; Friedman et al., 2008; Kimberley et al.,
2008; Meltzer et al., 2009; Voyvodic et al., 2009).

4.2. Choice of Responses for Modeling
The compromised language abilities of individuals with aphasia create challenges for
neuroimaging studies of language recovery because aphasic individuals may have difficulty
performing selected neuroimaging tasks, particularly prior to treatment. Although it is
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possible to design tasks that can be performed with high accuracy (see Rapp et al. for
discussion of issues related to selection of tasks for neuroimaging studies of aphasic
individuals), error responses are common. Because studies have demonstrated that correct
and error responses may differ with regard to their neural signatures (e.g., Meinzer et al.,
2006; Fridriksson et al., 2009; Postman-Cacheteaux et al., 2010), this issue is not trivial.
Thus, the question arises: which types of responses should be included in the analysis when
assessing treatment-induced recovery? Typically, studies that assess the impact of treatment
on brain functions imply that (a) a given language function is impaired prior to treatment
and (b) treatment results in improvement in that language function, which is reflected in
participants’ performance ability and, in turn, changes in neural activation patterns seen
from pre- to post-treatment. Therefore, inclusion of only correct responses in pre-post
comparisons may prevent detection of meaningful changes. This strategy also putatively
would require an analysis with differences in the number of responses between scans, which
also could compromise the results. Analyzing both correct and incorrect responses, however,
may also lead to spurious findings because error responses likely reflect increased
processing demands (for a comprehensive review see Price, et al., 2006) and also influence
the timing of the HRF (Peck et al., 2004). However, it can be argued that regardless of
whether responses are correct or incorrect, participants use what ever processing resources
are available to them when performing a given linguistic tasks. Thus, changes in language
ability will be reflected by brain activation changes from pre-treatment, for example when
inefficient and incorrect linguistic processing is prevalent, to post-treatment when access to
more normal linguistic processing routines becomes possible (see Thompson et al., 2010b,
who take this position when examining treatment-induced recovery of complex sentence
processing in aphasia). Further, for some paradigms and tasks it is difficult to quantify
correct vs. erroneous responses, for example, for complex paradigms such as story
comprehension when task performance may not reflect linguistic processing routines or
abilities. Thus, decisions regarding which types of responses to analyze and how, or
whether, different types of responses should be grouped into the same analysis depend
mainly on the goals of the study and the experimental paradigm employed.

Statistical comparisons between sessions can be made by directly comparing different
sessions in the same statistical model. Meltzer et al. (2009) have argued that this procedure
assures that changes in the amount of noise do not produce misleading “changes” in
activation. Data also can be extracted from two sessions separately for subsequent
comparison, and then some procedure should be used to ensure that the detection sensitivity
for activation is equivalent across sessions (Parrish et al., 2000). For example, Gopinath et
al. (2009) developed a technique to compensate for differences in detection sensitivity of
BOLD measures across sessions. In short, the technique starts with the residuals of the
regression of a deconvolved hemodynamic response series against the acquired time series,
and uses this as the starting point for a mixed auto-regressive plus white noise model to
estimate noise structure for two sessions on a voxel-by-voxel basis. Once a time series
representing the noise structure of both sessions is modeled, then detection sensitivity can be
estimated by adding simulated hemodynamic responses of known amplitude to the estimated
noise time series at appropriate points and equating detection sensitivity between sessions
(see Gopinath et al., 2005 or Crosson et al., 2007 for details).

5.0. The Issue of Single Subject vs. Group Studies
The question of whether to analyze neural activation changes from pre- to post-treatment in
individual study participants or to analyze the data for groups of participants is another
important issue. What is quite clear is that individual participants in a given experiment will
differ with regard to the precise location and extent of their lesions, a situation that directly
affects the neural tissue available to support recovery. That is, activation patterns will
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necessarily differ across participants. Nonetheless, it is important to integrate and generalize
findings across individuals with the same language deficits or other variables, such as age,
handedness, gender, or time post stroke. However, we see no reason to group individuals by
classic aphasic syndromes, which are heterogeneous both functionally and neurologically.

5.1. Single Case Studies
Analysis of individual cases of aphasia can be advantageous compared to group studies in
aphasia research. Data from individual participants can be analyzed in native space, which
avoids localization errors introduced by inter-subject registration procedures and assures
anatomical correspondence between individual participant’s anatomy and his/her activation.
This procedure also enhances the ability to visualize perilesional activation, which might not
be detected even in highly homogeneous groups of aphasic participants (see below for a
discussion of this problem with regard to treatment studies). On the other hand, there are
important drawbacks to the individual participant approach. Namely, there is an inherent
lack of power to detect activation changes, which can only be resolved at the design level
(e.g., by increasing the number of trials). Further, the results from individual participants
cannot easily be generalized to other individuals with aphasia. The latter problem, however,
can be resolved by analyzing series of aphasic cases. The results can then be interpreted with
regard to commonalities and differences between activation patterns found across
participants, in the context of the other information that is available. For example, this may
allow investigators to assess activation patterns associated with treatment outcome (see,
Crosson et al., 2009), or compare activation patterns for participants who respond well
versus poorly to treatment.

A critical aspect associated with individual participant or case series designs is that such
studies require an appropriate and clearly stated a priori hypothesis regarding the anticipated
mechanism of treatment, or brain activation changes that can be tested and potentially
rejected. Even well designed case studies that only include a posteriori explanations of
change in activation patterns are simply descriptive and do not provide information about
the mechanisms of change. A good example of an a priori hypothesis that can be tested is
discussed by Crosson et al. (2005). Here, the authors engaged participants in a specific
intervention designed to shift activity from the left to the right frontal lobe.

5.2. Group Studies
The types of analyses that are feasible for evaluating treatment-induced changes in
activation in longitudinal designs are quite different from longitudinal studies with groups of
healthy participants, for example, when evaluating the reliability or repeatability of
activation over time. In non-brain-damaged participants, task-related activation changes can
be assessed at the first level and then these images can be entered into the second level for a
group analysis assuming a similar expression of potential effects across the group and time.
Conversely, within groups of aphasic participants, individual differences in lesion patterns,
functional reorganization following stroke, and the resultant language profiles may be
associated with highly variable patterns of behavioral improvement or changes in functional
activation. Even in highly homogeneous samples these variables may compromise detection
of perilesional activation changes when using simple pre-post comparisons and entering
them into a group analysis.

It is clear that alternative strategies for analyzing data from aphasic individuals at the group
level are necessary. One option is to use a region-of-interest approach in which specific
brain areas are chosen depending on the aims of the study. Then, activation changes in these
pre-defined ROIs can be correlated with performance gains following treatment. Examples
of this approach can be found in the studies by Richter et al. (2008) and Meinzer et al.
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(2008). Another approach that does not require a priori selection of ROIs has been used in
three previous studies by Raboyeau et al. (2008), Menke et al. (2009) and Fridriksson
(2010). In these studies pre-post activation patterns were compared directly on an individual
level and the resulting images were entered into a whole brain regression analysis. Here, a
behavioral regressor (e.g., performance gains after treatment) was used to predict which
activated brain areas were associated with superior behavioral improvement in a group of
aphasic participants. This statistically powerful approach does not suffer from many of the
problems associated with averaging across a heterogeneous group, but it must, nonetheless,
be approached with caution as issues of heterogeneity of language-lesion and language-
deficit relations are still highly relevant for interpretation of the results. In addition, when
using correlational approaches, small sample sizes (as is the case in most aphasia treatment
studies) are prone to outlier effects. Thus, researchers are advised to closely inspect (and
report) their data and deal with outliers in appropriate ways. With regard to homogeneity of
the aphasic group, it has been noted in previous reviews that inhomogeneous samples in
cross-sectional designs may reduce detection power and false positives (see Price et al.,
2006, and Crosson et al., 2007). On the other hand, in the context of treatment studies,
highly homogeneous samples may reduce variability of performance improvements and
functional activation changes, which in turn reduce statistical power for correlational
methods and may prevent identification of predictors associated with treatment success.
Importantly, however, imaging of treatment-induced changes in neural activation in groups
of individuals with aphasia can provide information about predictors of treatment success
when activation changes over time are correlated with a given indicator of behavioral
performance improvement (i.e., which functional activation changes produce the best
outcome). This in turn may provide information about which patients are best suited for a
particular treatment approach. Moreover, the results can then be generalized, at least with
regard to the same treatment paradigm and similar patient populations. With regard to
clinical rehabilitation, this is very important, as it may eventually guide the assignment of
individual patients to specific treatment approaches.

5.3. Comparison with a Group of Healthy Participants
Although longitudinal assessments of activation patterns in aphasic groups at a given
recovery stage greatly benefit from a healthy control group, the assessment of treatment
effects over time does not necessarily require a healthy control group. On the other hand, in
some instances the inclusion of a healthy group of participants may have some advantages.
First, instead of assuming that a given paradigm elicits activity in a given number of regions,
the validity of the paradigm can be verified by including healthy participants. Second
repeated assessment of healthy participants can provide a measure of reliability. Third,
comparison of changed activation patterns in aphasic individuals to those of a non-brain-
damaged control group allows assessing whether changes occur within or outside of the
“normal” language network (e.g., Menke et al., 2009; see Warren et al., 2009 for a recent
example of altered temporal lobe functional connectivity in aphasia). Finally, an interesting
approach used by Raboyeau et al. (2008) compared the neural signatures of language re-
training in chronic anomia to activation changes in healthy controls who were trained to
name objects in a previously learned foreign language with low current proficiency.
Although there are critical differences between the two groups, the comparison allows
examination of mechanisms involved in language reacquisition after stroke and language
learning in healthy participants.

When choosing to obtain data from healthy control subjects, however, the participants
should be closely matched to the aphasic group with regard to demographic and
socioeconomic variables. This is an important pre-requisite to allow for valid interpretation
of the results. For example, with regard to language tasks, several studies have shown that
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the neural representation of language production or comprehension mechanisms differ in
healthy young vs. older participants (e.g., Wingfield et al., 2006; Fridriksson et al., 2006;
Wierenga et al., 2008; Meinzer et al., 2009; Meinzer et al., 2010). Therefore, comparing
older participants with stroke-induced aphasia who may evince fundamental changes in
brain morphology and function due to age or other variables to a (younger) control group is
contraindicated.

6.0. Functional Network Analyses
It is clear that cerebrovascular stroke results in local cortical dysfunction, as well as
impaired functioning in remote areas and potentially a compensatory up-regulation of other
areas (e.g., Warren et al., 2009). Recent developments in data analysis allow the
investigation not only of functional segregation of brain areas related to a specific task, but
also assessment of functional integration among different regions. This dynamic network
approach has potentially interesting applications to the investigation of longitudinal changes
in brain connectivity associated with treatment-induced behavioral changes in aphasia (see
Price et al., 2006 for a review of common techniques). Integration within a distributed
system is usually understood in terms of effective connectivity, which refers to the influence
that one neuronal system exerts over another, either at a synaptic (i.e. synaptic efficacy) or
population level (Friston, 2002). Effective connectivity may be measured, for example,
using structural equation modeling (SEM) of fMRI data over time. SEM of fMRI time series
estimates the effects (in terms of modulation of connection strengths) of experimental
manipulation on connectivity among brain regions within specified constraints, based
largely on consideration of anatomical connectivity of the brain (Buchel & Friston, 2000;
Buchel & Friston, 1997). This approach has been applied to the investigation of training and
generalization effects in anomia rehabilitation (Vitali et al., 2009).

Changes in the coupling between different regions can also be investigated using dynamic
causal modeling. In DCM, the brain is treated as a dynamic input–state–output system. A
given experiment is considered as a designed perturbation of neuronal dynamics that is
propagated throughout a network of interconnected anatomical nodes. The coupling between
regions is estimated using a series of inputs (i.e., stimulus functions) and the changes in
regionally-specific hemodynamic responses are measured (Friston et al., 2003). This
approach has successfully been applied to language network changes in primary progressive
aphasia (Sonty et al., 2003) and more recently, to the assessment of longitudinal changes
associated with anomia treatment (Abutalebi et al., 2009). Variants of Granger Causality
Modeling (GCM) are more assumption free than SEM and DCM and are being developed to
address functional connectivity in fMRI data (e.g., Zhou et al, 2009). All of these forms of
analysis yield insights regarding how areas of brain activity integrate into dynamic systems
to perform various tasks that are not available from the simple observation of activity
changes in various brain regions.

Importantly, network analyses can be accomplished even in single case studies. Simple pre-
post comparisons in single participants (e.g., t-tests) can provide statistical tests of activation
changes in various regions of the brain. However, complex dynamic changes at the system
level can also be assessed by examining connectivity of brain areas supporting language
recovery and changes in response to treatment and underlying driving forces, such as
increased compensatory input from non-domain specific areas. The feasibility of a dynamic
network approach to examine the effects of aphasia rehabilitation has recently been
demonstrated in two case reports (see Abutalebi et al., 2009; Vitali et al., 2009). Moreover,
hypothesis-driven modeling of network dynamics in case studies could be guided by
obtaining additional information about structural connectivity, by evaluating the integrity of
white matter tracts prior to and following treatment (see, for example, papers by Schlaug et
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al., 2009, and Gauthier et al., 2008). To date, network analyses have not been performed at
the group level but such may be possible in future studies (see Warren et al., 2009 for a
cross-sectional example in aphasia research).

7.0. Summary and Conclusions
Neuroimaging in aphasia treatment research has the potential to provide insight into the
neuroplastic capacities of the adult human brain and the mechanism of language recovery
after brain damage. Moreover, understanding the neural substrates of treatment effects may
prompt changes to existing approaches and/or the development of new treatment paradigms
that may contribute to the efficacy of rehabilitation efforts. However, neuroimaging of
aphasia treatment poses several challenges to researchers that have not been addressed in the
past.

The present paper conveys the basic agreement among researchers about critical issues with
respect to fMRI data processing in aphasia treatment research that was reached during a
consensus conference in Fall 2009 at Northwestern University, Chicago. We reviewed
critical issues specifically related to data analysis, including aspects of the pre-processing,
the statistical modeling, and the interpretation of such data sets. Moreover, we aimed to
provide the reader with a set of general practical guidelines and references to facilitate
choosing adequate data analysis strategies.
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Highlights

• fMRI is the most widely used technique to study neuroplasticity in aphasia
recovery

• The present review focuses neuroimaging data analysis in aphasia treatment
research

• We discuss a basic set of practical guidelines applicable to a wide range of
studies
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